Supabase Vector Guide With Lovable

Your one-page resource for Supabase Vector

A web browser window displaying a website homepage with text promoting easy marketplace creation using Airtable without coding. The design includes a dark background, bright accent colors, and a gradient border. There is a navigation menu with options like Product, Use Cases, Explore, and others. A call-to-action button labeled 'Start for free' is featured prominently.
A web browser window displaying a website homepage with text promoting easy marketplace creation using Airtable without coding. The design includes a dark background, bright accent colors, and a gradient border. There is a navigation menu with options like Product, Use Cases, Explore, and others. A call-to-action button labeled 'Start for free' is featured prominently.

Rated 5 stars by users

★★★★★

Comprehensive Guide to Using Supabase Vector with Lovable

Introduction

Supabase is an open-source backend-as-a-service platform built on PostgreSQL, offering features like authentication, storage, and real-time data syncing. Its vector capabilities, powered by the pgvector extension, enable storing and querying vector embeddings for tasks such as semantic search, recommendation systems, and AI-driven applications. Lovable is a platform that simplifies application development by allowing users to interact with Supabase databases through natural language prompts, making it accessible to non-technical users. This guide provides a detailed, user-friendly process to set up and use Supabase Vector within Lovable, ensuring you can leverage vector embeddings for advanced features. It also includes steps to prepare for future feature additions, such as authentication or file storage.

Prerequisites

Before starting, ensure you have:

  • A Supabase account (Sign Up).

  • A Lovable account (Lovable).

  • Basic understanding of web applications and AI concepts (e.g., embeddings).

  • Access to an embedding model provider (e.g., OpenAI, Hugging Face) for generating vector embeddings.

Step 1: Set Up Supabase with Vector Support

To use Supabase Vector, you need a Supabase project with the pgvector extension enabled.

1.1 Create or Access a Supabase Project

  • Visit Supabase and create a new project or use an existing one.

  • Note your project’s URL and API key (found in the Supabase Dashboard under Settings > API).

1.2 Enable the pgvector Extension

  • In the Supabase Dashboard, navigate to the Database page.

  • Click Extensions in the sidebar.

  • Search for “vector” and click Enable.

  • This activates the vector data type, allowing you to store and query vector embeddings (Vector Columns).

Step 2: Connect Lovable to Supabase

Lovable integrates with Supabase to manage database operations through prompts.

2.1 Connect Your Supabase Project

  • In the Lovable editor, go to the Integrations section.

  • Click Connect to Supabase and follow the authentication steps.

  • Select your Supabase project or create a new one if needed.

  • Ensure the project has the pgvector extension enabled (from Step 1.2).

2.2 Verify Connection

  • Confirm that Lovable can access your Supabase database by testing a simple prompt, such as: “List all tables in my database.”

  • Lovable should display the database schema or confirm the connection.

Step 3: Create a Table for Vector Data

You need a table to store your data (e.g., documents) along with their vector embeddings.

3.1 Use a Prompt in Lovable

  • In Lovable, enter a prompt like:
    “Create a table named ‘documents’ with columns ‘id’ (serial primary key), ‘title’ (text), ‘body’ (text), and ‘embedding’ (vector with 384 dimensions).”

  • Lovable will generate the corresponding SQL:

    sql

    Copy

    CREATE TABLE documents ( id SERIAL PRIMARY KEY, title TEXT NOT NULL, body TEXT NOT NULL, embedding VECTOR(384) );

3.2 Execute the SQL

  • Review the SQL snippet generated by Lovable.

  • Execute it in the Supabase SQL Editor through Lovable’s interface to create the table.

  • Verify the table exists by prompting: “Show the structure of the ‘documents’ table.”

Step 4: Generate and Insert Vector Embeddings

Vector embeddings are numerical representations of data, typically generated by AI models.

4.1 Generate Embeddings

  • Use an external API to generate embeddings for your data:

    • OpenAI: Use the text-embedding-ada-002 model for 1536-dimensional embeddings.

    • Hugging Face: Use sentence-transformers models (e.g., gte-small) for 384-dimensional embeddings.

  • Example (using OpenAI in JavaScript):

    javascript

    Copy

    const { Configuration, OpenAIApi } = require('openai'); const configuration = new Configuration({ apiKey: 'your-openai-api-key' }); const openai = new OpenAIApi(configuration); async function generateEmbedding(text) { const response = await openai.createEmbedding({ model: 'text-embedding-ada-002', input: text, }); return response.data.data[0].embedding; } const embedding = await generateEmbedding('This is an example document.');

4.2 Insert Data via Lovable

  • Use a prompt in Lovable to insert the data:
    “Insert a document with title ‘Example Document’, body ‘This is an example.’, and embedding [embedding_values].”

  • Replace [embedding_values] with the actual embedding array (e.g., [0.1, 0.2, 0.3, ...]).

  • Lovable will generate an INSERT SQL statement:

    sql

    Copy

    INSERT INTO documents (title, body, embedding) VALUES ('Example Document', 'This is an example.', '[embedding_values]');

  • Execute the SQL in Supabase through Lovable.

Step 5: Perform Vector Search

Vector search allows you to find data similar to a given query based on vector embeddings.

5.1 Generate a Query Embedding

  • Generate an embedding for your search query using the same model used for your data (e.g., OpenAI).

  • Example: const queryEmbedding = await generateEmbedding('Search query text');

5.2 Use a Prompt for Search

  • In Lovable, enter a prompt like:
    “Find the top 5 documents most similar to the embedding [query_embedding].”

  • Replace [query_embedding] with the actual query vector.

  • Lovable will generate a SQL query:

    sql

    Copy

    SELECT * FROM documents ORDER BY embedding <-> '[query_embedding]' LIMIT 5;

  • Execute the query in Supabase via Lovable to retrieve the results.

5.3 Display Results

  • Use the results in your Lovable application, such as displaying a list of relevant documents to users.

Step 6: Optimize for Performance

For large datasets, optimize your vector searches:

  • Add an Index:

    • Use a prompt: “Add an index to the ‘embedding’ column of the ‘documents’ table for faster vector searches.”

    • Lovable may generate:

      sql

      Copy

      CREATE INDEX ON documents USING ivfflat (embedding vector_l2_ops);

    • Execute the SQL to improve query performance.

Step 7: Adding More Features in the Future

Supabase’s modular architecture allows you to expand your application easily:

  • Authentication:

    • Prompt: “Add user authentication with email and password.”

    • Lovable will generate SQL and configuration for Supabase Authentication.

  • File Storage:

    • Prompt: “Set up file storage for images.”

    • Lovable will configure Supabase Storage.

  • Real-Time Updates:

    • Prompt: “Enable real-time updates for the ‘documents’ table.”

    • Lovable will enable Supabase Realtime.

  • Edge Functions:

    • Prompt: “Create a function to process data before storing.”

    • Lovable will set up a serverless function.

Step 8: Maintenance and Best Practices

  • Backups: Regularly back up your Supabase database using Supabase’s backup tools.

  • Security: Use strong API keys and enable two-factor authentication for Supabase and Lovable accounts.

  • Updates: Keep your Supabase project and Lovable integration updated to access new features.

  • Monitoring: Use Supabase’s dashboard to monitor database performance and Lovable’s analytics for user interactions.

Sample Application

Below is a sample HTML page demonstrating how to interact with Supabase Vector via Lovable-generated SQL queries. This assumes you’ve set up a frontend to display search results.

<xaiArtifact artifact_id="60c1e109-c4f2-44dc-a666-55db24f6f49b" artifact_version_id="38325a7c-19f5-41c7-aeec-e22269bfd1ed" title="index.html" contentType="text/html"> <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <title>Supabase Vector Search with Lovable</title> <script src="https://cdn.jsdelivr.net/npm/react@18.2.0/umd/react.production.min.js"></script> <script src="https://cdn.jsdelivr.net/npm/react-dom@18.2.0/umd/react-dom.production.min.js"></script> <script src="https://cdn.jsdelivr.net/npm/@supabase/supabase-js@2.39.3/dist/umd/supabase.min.js"></script> <script src="https://cdn.jsdelivr.net/npm/@babel/standalone@7.23.9/babel.min.js"></script> <link href="https://cdn.jsdelivr.net/npm/tailwindcss@2.2.19/dist/tailwind.min.css" rel="stylesheet"> </head> <body> <div id="root"></div> <script type="text/babel"> const { createClient } = Supabase; const supabaseUrl = 'your-supabase-url'; // Replace with your Supabase project URL const supabaseKey = 'your-anon-key'; // Replace with your anon key const supabase = createClient(supabaseUrl, supabaseKey);

function App() { const [query, setQuery] = React.useState(''); const [results, setResults] = React.useState([]);

// Mock function for generating embeddings (replace with actual API call) async function generateEmbedding(text) { // Example: Call OpenAI or Hugging Face API return Array(384).fill(0); // Placeholder vector }

const handleSearch = async () => { const queryEmbedding = await generateEmbedding(query); const { data, error } = await supabase .rpc('search_documents', { query_embedding: queryEmbedding }) .limit(5); if (error) { console.error('Search error:', error); alert('Error performing search'); } else { setResults(data); } };

return (

<div className="container mx-auto p-4"> <h1 className="text-2xl font-bold mb-4">Supabase Vector Search with Lovable</h1> <div className="mb-4"> <input type="text" value={query} onChange={(e) => setQuery(e.target.value)} placeholder="Search documents..." className="border p-2 rounded w-full" /> <button onClick={handleSearch} className="bg-blue-500 text-white p-2 rounded mt-2" > Search </button> </div> <ul className="list-disc pl-5"> {results.map((doc) => ( <li key={doc.id} className="mb-2"> <strong>{doc.title}</strong>: {doc.body} </li> ))} </ul> </div> ); }

ReactDOM.render(<App />, document.getElementById('root')); </script>

</body> </html>

Troubleshooting

IssueSolutionLovable prompt not generating correct SQLReview the generated SQL and adjust it manually before executing.Supabase Vector extension not enabledEnsure the pgvector extension is enabled in the Supabase Dashboard.Vector search slowAdd an index to the embedding column (see Step 6).Embedding generation failsVerify your API key for OpenAI/Hugging Face and ensure the model supports your input.

Conclusion

This guide provides a comprehensive process for using Supabase Vector with Lovable, enabling you to store and query vector embeddings for advanced features like semantic search. By leveraging Lovable’s prompt-based interface, you can manage Supabase Vector operations without deep technical expertise. The setup is flexible, allowing you to add features like authentication, storage, or real-time updates as your application grows. For further details, explore the Supabase AI Documentation or Lovable Documentation.

</xaiArtifact>

Key Citations